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Behavior at Small Distances and Low 
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We compute upper and lower bounds for the canonical ion-ion distribution 
function g]~)(r) of the two-dimensional Coulomb gas for small r and 1 < ? < 2, 
where ? is the plasma parameter. Both bounds are proportional to r 2- ~/(~ - 1), 
which proves that g~U)(r) behaves as r 2 Y, as conjectured by Hansen and Viot. 
We conjecture that, in the thermodynamic limit, g 1 ~ ( r ) ~ 2 ( 7 - 1 )  l(r/a)2-'~, 
where a=(Ttn) -l/z is the mean interionic distance. We also compute the 
canonical one-body distribution function with one pair ( + ,  - )  in a disk, for 
any r and any ~. 

KEY WORDS:  Two dimensions; Coulomb gas; point ions; point electrons; 
distribution function; small distances; low temperatures. 

1. I N T R O D U C T I O N  

Hansen and Viot ~1) have shown, by studying the three-body problem and 
fitting the results of numerical simulations for systems with up to 196 ions 
and electrons, that the ion-ion distribution function of the two-dimensional 
Coulomb gas behaves as r 2-  ~ as r ~ 0 and 1 < 7 < 2, instead of r ~ as predic- 
ted by Widom's theorem, ~2) where 7 = eZ/kT is the plasma parameter. The 
main aim of this paper  is to prove this result for any N. 

All computations are done on reduced quantities in the canonical 
ensemble. These quantities are defined in Section 2. In Section 3, we com- 
pute an upper bound for the reduced ion-ion distribution function with N 
pairs ( + ,  - ) ,  vll'q(N), by means of the function with two pairs ~,~2)eH. Sec- 
tions 4-6 are devoted to computing the latter in the Hansen and Viot limit, 
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i.e., r --* 0 and 1 < 7 < 2. This gives an upper bound for n(N) proportional to vt l  
(7 - 1) -1 r 2-~. In Section 7, we compute a lower bound for ~'11"(N) that has 
the same ( 7 - 1 )  -1 r2-'e behavior. In Section 8, we study the behavior of 
the bounds in the thermodynamic limit. We show that the lower bound has 
a thermodynamic behavior, and we conjecture that it is the exact 
asymptotic behavior in the Hansen and Viot limit. A summary of the 
results is given in Section 9. 

2. DEFINITIONS AND GENERAL PROPERTIES 

We consider a two-dimensional system of N ions and N electrons with 
unit charge, included in a disk of radius R. The potential energy of the 
system is 

N 
U2N= -- ~ qiqje 2 l n ( I r i - r j l /L )  (1) 

i<j 

where r 1 ..... r N are the coordinates of the ions, FN+ 1 ..... r2N the coordinates 
of the electrons, and qie is the charge of the ith particle (ql . . . . .  qN = 1; 
qN+l . . . . .  q2N = --1). L is an arbitrary length, which fixes the zero of 
energy. 

The configuration integral and the unnormalized one-body and 
ion-ion distribution functions are defined, in the canonical ensemble, by 

QN(R,L)=f e flU2Ndrl...dr2N 
ril ~< R 

p]N)(rt ; R, L) = flril ~<R e fluzNdr2.., dr2N 

p~)( r  t, r2; R, L) = f e -~U2u dr3. .-  dr2N 
Iril <~ R 

where/~ = 1 /kT  is the inverse temperature. 
The L and R dependences of these functions are 

QN(R, L)  = LNYR2(2N- Ny/2)QN 

p~N)(rl; R, L)= LNYRZ(2N-1 N?/2)D]N) (r~) 

P]N)(rt,rz;R,L)=rNY~ ~" N'/2)r~(N)( "R, ~ )  

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 
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where 7 = fl e2 is the plasma parameter, and we have defined the reduced 
functions 

QN=_Qu(1, 1) (8) 

p~U)(xl) ~- p{U)(x, ; 1, 1) (9) 

p~N)(x,, X2) ~ p~N)(Xl, X 2 ; 1, 1) (10) 

From (5)-(7), the (normalized) canonical one-body and ion-ion 
distribution functions are independent of L: 

N 
g~U)(r 1 ; R) - nQjv(R, L) P~N)(rl ; R, L) (l 1) 

N ( N -  1) p~)(r l ,  r2; R, L) (12) g]lN)(rl, r 2 ; R) = nZQN(R ' L) 

where n = N/V (V= ltR 2) is the ionic density. 
They can be expressed in terms of the reduced functions (8)-(10): 

g N Ir, ; R) = 

( 1 )  
g~l~)(rl, r2" 

' \ R '  R /  

(13) 

(14) 

The one-body and ion-ion distribution functions are defined in the 
thermodynamic limit by 

g~(r l)= lim g~N)(rl;R ) (15) 
N , R  ~ cx) 
n = c o n s t  

g l l ( r l , r 2 ) =  lira g~U)(rl,rz;R ) (16) 
N , R ~  c o  
n = c o n s t  

3. UPPER B O U N D  OF THE R E D U C E D  I O N - I O N  D I S T R I B U T I O N  
F U N C T I O N  W I T H  N PAIRS BY M E A N S  OF THE 
D I S T R I B U T I O N  F U N C T I O N  W I T H  T W O  PAIRS 

From now on, all computations will be done on the reduced quantities 
(8)-(10). The interpretation of the results can be done through formulas 
(13)-(1-6). Let us denote the reduced coordinates r]R ( i=  1 ..... N) of the 
ions by the complex numbers zi, and the reduced coordinates r JR 
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( i=  N +  1,..., 2N) of the electrons by i~. With these new variables, (8)-(10) 
take the form 

QN = fz,,r IAl~ dzl.., dz N d i l  "'" d i N  

p~)(zl)= fz I~l' dz:...dz~di~ ...dip 
i,~i E D 

p(w)lZ Z2)=- fz [A[~ d z 3 " " d z u d ~ l  " " d i u  11 i 1~ 
i,~i S D 

(17) 

(18) 

(19) 

where D is the disk of radius 1, and 

= I IL j  (zi- zj) gIT<~ ( i , -  ij) 
N N,,j (z,- 4j) 

(20) 

In (17)-(19), we have set dz=  dx dy, where z is the complex number 
x + iy (not to be confused with the usual notation dz = dx + i d y ) .  

In the sequel, we make a repeated use of the following lemma. (3) 

k e m m a  1. 
positive. We have 

with 

Let bl,..., b, be n nonnegative real numbers, and 7, real 

bi ~ n  ~ by (21) 
i 1 i = 1 '  

x = m a x ( 0 , 7  - 1) (22) 

This can be proved by using the inequality between weighted means 
(Ref. 4, p. 26, Theorem 16) for 7 > 1 and Jensen's inequality (Ref. 4, p. 28, 
Theorem 19) for 0 < 7 < 1. 

Canchy's formula reads t3) 

By developing the determinant A with respect to its first two lines by means 
of Laplace's theorem, (5) we find 

N 

A =  ~ ( -1 ) i+J+ ' a~A~  (24) 
i<j 
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with 

1/(z~ - ~)  1/(z, - ~j) 
(25) a/j 

1/(z2-- ~i) 1/(z2-- ~.j) 

and A~ is the minor obtained from 3 by deleting its first two lines and 
colums i and j. 

Applying Lemma 1 to (24) with b~= la~j] IA01, n = �89 we find 

Izl[~< N(N-  1) ~, la~l ~ IA~] ~ (26) 
i < j  

Integrating (26) with respect to z3,..., CU gives 

.~7~(z~, ~2)<~ N ( N -  1) Q~ ~p]]~(z~, ~ )  (27) 

This upper bound is valid for any z1, z 2 and any y. 

. 

with 

UPPER B O U N D  OF THE REDUCED D ISTRIBUTION 
FUNCTION WITH T W O  PAIRS p ~ ( z ~ ,  zz) 

From (19) and (20), we have 

p~])(zl, z2)= IZl-z21 e G(z~, z2) (28) 

• • 2 • • 
fr d~l #~2 (29) G(Zl,Z2)= , ~  [ Z l _ ~ l ~ l z  2 -  ~.1[~ [z l_  ~=l~ iz~_ ~z[~ 

By combining Lemma 1 with the triangular inequality, we find 

I ~  - ~21 ~ ~< 2X(Jz~ - ~ I ~ + [z l  - ~2r r) ( 3 0 )  

Substituting (30) into (29) gives 

G(zl, z2) ~< 2z+1 fz) d~l ~ d~2 (31) 
Iz~-  ~11 ~ oD Iz, - ~21 ~ Iz2-  ~2J ~ 

We have (see Appendix) 

f~ 7- ;  [ =pg~( l z~ l )=2_~  1; l; I~l (32) 
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Further, the Riesz formula reads (6) 

fR d~2 k~,~ 
a ]z 1 - ~2[ a-= Iz2-- ~2[ a-e = [zl--z21 a- (=+/~) 

with 

~"/2F(~/2 ) /'(fl/2 ) F( ( d -  ~ - fl)/2) 
k=,, = r ( ( d -  a)/2) V ( ( d -  fl)/2) V((a + fl)/2) 

(33) 

(34) 

provided 0 < a < d ,  0 < f l < d ,  0 < a + ~ < d .  
Letting ~ = fl = d - ? ,  d =  2, the Riesz formula is applicable provided 

1 <7 <2,  and the second integral in (31) is bounded by 

with 

C T / I z  I - z2[ 2~'-2 (35) 

IF(1 -7 /2)3  2 F ( 7 -  1) 
C~ = k2-y,2-7 =7~ iF(y)]2 r (2  _ 7) (36) 

Applying the recurrence relation and the doubling formula for the gamma 
function (Ref. 7, Eq. 8.335.1, p. 938) we find 

C'r (37) 
c , =  ( 2 - ~ ) ( 7 - 1 )  

~3/22~F( 2 _ 7/2) 
c', = v(~) r (3  - 7)/2) (38) 

t D  
i i i I 

t . e  i . ~  J . ~  l .B  

Fig. 1. Graph of the function C'~ defined by Eq. (38). 
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The function C'~ is d rawn in Fig. 1 for 1 ~< 7 ~< 2. Regrouping  (28)-(35),  
we obtain  

p~])(zl, z j  <~ 2 z + ~p~U([z2[) C~ tz~ - -  z2[ = - ~  (39) 

5. L O W E R  B O U N D  FOR "(Zltz za) I ' 1 1  ~, 1 �9 

Let ] Z l - - Z 2 l = r  , D l = d i s k  centered at zl with radius r 1/2, and 
D 2 = disk centered at zl with r a d i u s / / 2 +  ri/4. We assume that  z~ is not  on 
the circle of radius 1, and  we choose r sufficiently small so that  
r l / 2 + r l / 4 <  1 --]zl[. We have thus (see Fig. 2) 

D 1 c D 2 c D  (40) 

Let A be any domain  for the variables (r r We define 

G(zl,z2;A)=f~ I~x-~217 d~ld~'2 (41) 
~I,~2)~A 1 ~ 1 ~  "7 IZI - -  ~ l l  7 IZ2 - -  ~ l l  7 ]Z2 - -  ~217 

Fig. 2. 

D 

r-=> 

Relative positions of the particles in the computation of the lower bound for the 
reduced ion-ion distribution function ,,121 t~ll . 

822/49/5-6-21 
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Let D -  D2 denote the set of points that belong to D but not to D2, and 

A , = { ( ~ I , ~ 2 ) I ~ 1 6 D , , ~ 2 E D - D 2 } - D , •  (42) 

In this domain, we have 

l~i-~21 [~a--zl[ rl/4 
i~-1 =~-~ >~ 1 i-~--_-~ ~> 1 - (43) 

By substituting (43) into (41), we find 

G(zx, z2; A1) >~ (1 - r~/4) "~ fr d~2 
2~o o 2 1 z 2 - G L  ~ 

fr d~l x (44) 
IEDI  IZ1 - -  ~11 7 ]Z 2 - -  ~11 7 

As r-+ 0, the first integral goes to 

fe d~2 
_2 G O I z , -  dal >-  P~I)(IZlt)  (45) 

By making the change of variable { 1 - Z l  = r~, we find that the second one 
goes to 

f~ d{ = C~r 2- 2"~ (46) r2-2.2 
2 I~1 ~ ' / i -Z  dl" 

Regrouping (44)-(46), we find, for r sufficiently small, 

G(Zl, z2; A1) >~ p]l)([zl[) C~r 2-2~ (47) 

By noticing that A~ u A 2 c D 2 and A~ c~ A 2 = ~ ,  with A 2 = ( D -  D2)x DI, 
we find 

G(Zl, z2) >~ G(zl, Z2; AI) + G(zl, z2; A2) (48) 

Substituting (47)-(48) into (28) gives 

p]21)(Zl, z2)>~ 2Cyp~b([ztl) r 2 Y (49) 

for r sufficiently small and 1 < 7 < 2. 

6. A S Y M P T O T I C  B E H A V I O R  OF p ~ 2 ) ( Z  1 , Z 2 )  AS z 2 - - ~ z  1 

We want 
Z2--') ZI~ 

to show that the lower bound (49) is exact in the limit 

p]])(z,, z2) =2~=,, 2C~p~'(Iz,l) r 2-'  (50) 
1 < 7 < 2  
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Let us multiply and divide the integrand of G by the quantity 
[ z , - -~ I ]Y+ ]Zl--~2lY: 

G(Z1, z2) = 2 
Iz~ - d,I ~ + Iz, - r ~ 

d~, d~2 
• (51) 

[ Z l - ~ 1  ~ I z 2 - ~ l l  ~ I z ~ -  ~1 ~ 

A I = D I X ( D - D 2 ) , A 2 = D l x D 2 ,  and A 3 = ( D - D 1 ) x D .  We have Let 
DZ= A, v A2 w A 3 and A~c~ Aj= ;~3, so 

3 
G(z,, z 2 ) =  E G(z1, z2; A~) (52) 

i - ,  

In A~, we have the inequalities 

Iz, - ~21 ~> rl/2 + r'/4 (53) 

]7, -- ~11 ~ rl/2 (54) 

[Zl -~2l - l z l -~ l l<~l~l -~2!<<.]Zx-~2t+lz , -~ , ]  (55) 

The first term in the integrand of (51) can be reexpressed as 

1 

k l z , - - ~ l  \ lz ,  ~21) J 

The first term of (56) is bounded by (1 - r ' / 4 )  e and (1 + r'/4) y, and the 
second one by (1 + ry14) - '  and 1. Therefore, for r sufficiently small, we have 

G(zl ' z2; A,) ~ 2 f~ d~, f~ d~2 (57) 
IED, IZl--~,['etZ2--~IIY 2~O D2]Z2--~21 y 

We have seen in the preceding section that the first integral goes to C~/-27 
and the second one to p~l)(Jzll ) 

G(z,, z2; A,) ,"~o 2C'/p~')(lz'[) r2-2~ (58) 

Because of (30), we have 

G(ZI ' Z2. Ai ) <~ 2x+ 1 fA 
d~2 

' , jZl- ,Ti 2- ,j, Iz27- 2r, 

In A2, we have 

]Z2--~2 ] ~< ]z2--~11 + ]z,--~21 <~r+rl/2+rl/a<-3r'/4 

(59) 
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This implies 

l z2 - -~2]  ~<3rl/4 

and 
32-7  

G ( z l , z 2 ; A 2 ) ~ 2  z~ 1Cy ?'2- 27 r (2 7)/4 (60) 
2 - 7  

In A 3, we have 1z1-~11 >Jr ~/2. By letting ~=z~-~ j  in (59), we find 

G ( z ~ , z 2 ; A 3 ) < ~ 2 z + ~  f r d~ p]l)(]z2j) (61) 

By taking ~=r~, the integral in (61) can be bounded by 
r 2 2712 ~ 1/( 7 _ l ) ] r  ~-I provided r < l / 4 .  This gives 

2X+7 
G(Zl  ' z2 ; A3 ) ~< r 2 - 2 ~  pll)(lzd) r ~- i (62) 

7 - 1  

By comparing (60) and (62) to (58), we see that the contributions 
of A2 and A3 are negligible for r sufficiently small and 1 < 7 < 2 ,  which 
proves (50). 

7. LOWER B O U N D  FOR p~N)(z 1, Z2) 

Le t  

A I = { ( Z 3 , . . . , ~ N )  I ~ x e D ~ ; z 3 , . . . , Z N , ~ 2  ..... ~ N ~ D - D 2 }  (63) 

In this domain, we have [cf. (43)] 

~-- -"~i]  >~ 1 - r '/4, j = 2  ..... N (64) 

Iz, -- z:l 
-~-s _T ~-~11) l - r ' / 4, j = 3 , . . . , N (65) 

Let us rewrite A in the form 

1 (]  }z~-zsl 
IAI = I z , - z d  Iz,  - ~11 Iz2 - ~11 j =3  [ - ~ f - - ~  

X U 1~ N I Z i -  ~j] (66) 
s=2 ]Z l -  ~jl i.j=2 
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By integrating (66) over z3 ... ~N and using (64)-(65), we see that the con- 
tribution of A1 to p~N}(zl, Z2) is larger than 

{ "  
I Z l  - -  Z217  ( 1  - -  t ' 1 / 4 )  2 N - 3  | 

J~ 

• f .  ]ZJN_iIT dz3""dZNd~2""d~N (67) 
~3 " " " ZN;~2 " �9 " ~N E D -- D2;z 2 E Ol  

For r sufficiently small, the first integral goes to CTr 2-2~ and the second 
one to p~u-1)(zl)" Since the domains A i obtained from A~ by exchanging 31 
and ~i are all disjoint and give a contribution bounded by the same 
quantity (67), we obtain, for z2 sufficiently close to z~, and 1 < 7 < 2, 

p~)(z , ,  z2) ~> NCTp] N- 1)(zl) Iz1 - -  Z212-7 (68) 

This is the generalization of (49) to the case of N pairs. In the case 
N = 2 ,  we have proved that the lower bound is the exact asymptotic 
behavior in the limit z2 ~ Zl. Although we have not been able to prove it, it 
seems reasonable to expect that the same holds true for any N: 

plN)(zI, Z2) z/2z~ NCTp~ x-')(zl) pzl --z2l 2-~ (69) 
I < 7 < 2  

8. B E H A V I O R  OF T H E  B O U N D S  IN T H E  T H E R M O D Y N A M I C  
L I M I T  

Our upper and lower bounds are not accurate enough to give rigorous 
results in the thermodynamic limit. However, it is interesting to investigate 
their behavior if we assume that we can interchange the r ~ 0 and the 
N ~  oo limits. 

With regard to the lower bound, this amounts to assuming that (68) is 
valid in the limit N--, or. Substituting (13)-(14) into (68) gives 

g]N}(rl'r2;R)>~(1--1) zcCTg]u ~'(r~;R)(~-~) 2-~NQN-~QN (70) 

with rlz=Jr~-r2X. Using (37) and R=ax/N, where a=(zn) -lIe is the 
mean interionic distance, we find 

NW2QN-l ( l _ N )  g~ZV-l)(r ~ �9 ;zC'~ ( _ ~ )  2 - '  
gjU)(r,, r2 ; R) >/(2 - 7) QN , R) - ~  (71) 

Since the free energy per particle exists in the thermodynamic limit, (8'9) 
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the ratio QN(R, L)/QN_I(R , L) has a limit as N ~  oe. Using (5), we find 
that the first term on the rhs of (71) has a limit, too. Let us define 

and 

_ (  2~2 )N r(l + X~/2) n 
Q N - \ 2 _ T ]  i- r ( 2 - - ~ / ~ u  KN (72) 

f ( 7 ) =  lim RN/RN_~ (73) 
N ~ o c ~  

The function f(7) exists, from the preceding argument and Stirling's 
formula, and satisfies f ( 0 ) = f ( 2 ) = l  because Q u = g  2N for "~=0 and 
QN ~ N! (Q1) N for  7 ~ 2.(3) 

Substituting (72)-(73) into (71) and using g l ( r l ) =  1, (8"9) we find in the 
thermodynamic limit 

g~(rl) ~>f(7) (74) 

with 

X/r~ 23~'/2- I EF(2 - 7 /2 ) ]  3 

Dr = ~/2F(7 ) F((3 - ~,)/2) (75) 

The function D~ is drawn in Fig. 3. It varies between 1.745 and 2.143. Our 
conjecture for QN can  be written (m) 

f (? )  ,-~ 1, Vy ~ [0, 2] (76) 

Z.I 

1.9 

I I I I 

I .?_ I . ~  ! .6 I .S 

Fig. 3. Graph of the function D 7 defined by Eq. (76). 
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If we assume that this holds, together with conjecture (69), we obtain the 
following very simple approximation: 

gix(r~, r2) r2~,1 - 1<7<2 ]J 1 (77) 

Our upper bound (27) is useless in the thermodynamic limit. Indeed, 
substituting (13), (14), and (50) into the upper bound (27), we find 

g]tU)(r,, r2; R ) ~  1_(2_ y) Q N N I  v/z] 2x~7 -_ 1) g{l)(/r~l; R) (78) 

For 7~2 ,  the term in square brackets in (78) is approximately equal to 
N2/27c 2. For other values of ~, (72) that shows it is proportional to N 3~/2- 1. 
Therefore it grows to infinity with N. 

9. S U M M A R Y  A N D  C O N C L U S I O N  

We have obtained lower and upper bounds, Eqs. (71) and (78), for the 
canonical ion-ion distribution function g]~')(r 1, r2; R) for r 2 sufficiently 
close to rl and 1 < y  <2:  

Bl('y , N) giN l)(r 1 ; R)  r~2 -~  ~< g l ~ ) ( r , ,  r 2 ; R )  ~< B2(7, N )  
7--1 7--1 

- - r ~ f  y (79) 

where B~ and B2 are bounded functions of 7 for any N. This proves that 
g(N) behaves as r 2 v at small distances and low temperatures, as conjec- 11 

tured by Hansen and Viot. This shows further that ,,(n) behaves as r/(7 - 1) , 511  

when one goes from the r v regime to the r 2-v regime, in the vicinity of 7 = 1 
and r sufficiently small. For N =  2, we prove that the lower bound in (79) is 
asymptotically exact, and we conjecture this is true for any N. 

In the thermodynamic limit, we conjecture 

f (? )  ?-ID~ (r_~.2)2 V<gi l ( r l , r2  ) (80) 

where f(7) and D v are defined by Eqs. (72)-(73) and (75), and that (80) is 
asymptotically exact when rl2--+ 0. Using further conjecture (76) for QN 
and D~ ~ 2, we find 

gll(r~, r 2 ) ~ Z - ~  (81) 
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Finally, we compute the one-body distribution function with one pair for 
any 7 and any r [cf. Eq. (Al l ) I"  

g]l)(r;R ) F(3-7/2)F(2-7/2)F(7__ Y___ r2) 
- r (3 -~ )  \2'2  1;1;R -7 (82) 

This gives back the result of Knorr for Q~. 

A P P E N D I X  

We study the one-body distribution function with one pair: 

g~l)(z) = (n/Q,) pl(z) (A1) 

with 

de (a2) 
Pl(Z)= f D i z _ ~ l  ~ 

We use the simplified notation pl(z) instead of p~)(z). 
We want to prove 

2n 7 7 izj2) (A3) pl(z)=~-S-~_ y F(-~, 5 -  1; 1; 

where F(a, b; c; z) is the hypergeometric function~ 

F(a, b; c; z) = ~ (a),(b), z" (A4) 
,=o (c). n! 

(a)o= 1, (a) ,=a(a+l) . . . (a+n--1)  (A5) 

Let r =  [z[, z = j z - ~ [ ,  ~ = e t~', and l(r, ~0)= ]z -~ l ,  where ~ is the point of 
intersection of the line ~ -  z with the circle of radius 1 (see Fig. 4). By 
taking the origin of coordinates at z, letting z = IR, and integrating over R, 
we find 

= 1 f2~l 2-~ drp=pl(r) (A6) Pl(Z) 2 - ~  o 

Changing the variable of integration from ~p to ~0, we get 

p l ( z ) = z - - - - - R e |  I ~-~ 1 -  d0 (A7) 
z - -7  % 
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r Z 

D 

Fig. 4. Definition of the variables used in the computation of the one-body distribution with 
one pair, g~)(r). 

Then, we substitute 
l 2 - -  t z  - ~r 2 = ( 1  - z / ~ ) ( 1  - f / ( )  

into (A7). We can develop each term in a convergent binomial series, since 
I z / ~ l  < 1: 

1 ~ (7/2)'(Y/Z-1)mri+m;~ei(m-')Odl~ (18) 
pl(z) = 2 ----~ t,m=0 l! m! 

(A7) can be identified with (A3) with the aid of (A4) (A5). 
We check (A3 by integrating it with respect to z in the disk Izl ~< 1: 

(21 =~-Z--~_~ F , ~ -  1; 1; u du (19) 

Using a known integral for the hypergeometric function (Ref. 7, 
Eq. 7.512.4, p. 849), we find 

2~ 2 /7(3 - y )  

Q1 = 2 - 7 F(3 - 7/2) V(2 -- 7/2) (A10) 

This can be identified to the value of Q1 given by Knorr. (12~ 
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T a b l e  I 

r 

d 
drr g~l)(r)  

g~l)(r) 

0 

0 

r ( 3  - ~/2) r ( 2  - ~/2) 

r ( 3 - 7 )  

1 

- 7 ( 2 - 7 ) ( 4 - 7 ) / 8 ( 1 - 7 )  ( 0 < 7 <  1) 
- oo  (1<7<2)  

1 _~_ 
4 

From (A1), (A3), and (A10), we find 

g~l)(r) = 

From the relation (13) 

F ( 3 - 7 / 2 ) F ( 2 - 7 / 2 )  7 7 ~-~_-- ~ F(~,  ~ - 1 ;  1;r 2) 

d ab 
-- F(a, b; c ; z ) = - - F ( a +  1, b +  1; c+ 1;z) 

dz c 

(All) 

(A12) 

CI(R) PLASMA 2 DIM 2 COI1P 

1.1 

1.l~ 

0 , 9  

0 . 8  

13.7 

0 . 6  

i 

GRMMR - 0.1 

GRMMA = 0 .5  

.... 6RMMR -- 1 

...... GRMMR - 1.5 

i __J_ 

l~,2 0 , 3  B.a B.5 g,6 

___ GRMMR = 1.8 

..... GSMMR = 1,9 

[3.7 0 . 8  [3 ,9 1 , 0  

Fig. 5. Graph ofg~n(r) for 7=0 .1 ,  0.5, 1.0, 1.5, 1.8, and 1.9. The solid line is for 7 =0.1. The 
other curves are identified by their relative positions at r = 1 from g~l)(1)= 1 -  7/4. 
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and (A3)-(A4),  we deduce that  g~l)(r) is monotonica l ly  decreasing. Using 
further (Ref. 7, Eq. 9.122.1, p. 1042) 

F(c)  F(c  -- a -- b) 
F ( a , b ; c ; 1 ) = F ( c _ a ) F ( c _ b ) ,  c > a + b  (A13) 

and (Ref. 7, Eq. 9.102.1, p. 1040) 

F ( a , b ; c ; 1 ) =  +oe, c<<,a+b (A14) 

we can summarize the variations of g]1)(r) in Table I. 
For  7 = 0, we have g~l)(r)= I, Vr. For  ? = 2, we have 

g]l)(r) = 1, 0 ~ < r < l  (A15) 

g{1)(1) = 1/2 (A16) 

We have drawn gll)(r) in Fig. 5 for several other  values of ~. 
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